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Introduction

In the last two decades, DNA marker technologies have been 
revolutionized the plant pathogen genomic analysis and 
have been extensively employed in many fields of molecular 
plant pathology. Molecular markers offer also the possibility 
of faster and accurate identification and early detection 
of plant pathogen.[1,2] DNA-based molecular markers 
have utility in the fields such as taxonomy, physiology, 
embryology, and genetics DNA-based techniques have been 
widely used for authentication of plant species of medicinal 
importance.[3]

Molecular Marker

DNA sequence with a known location on a chromosome 
and associated with a particular gene or trait is known as 

a genetic marker. It is a variation, which may arise due 
to mutation or alteration in the genomic loci. A  short 
DNA sequence may be a genetic marker, for example, a 
sequence surrounding a single base-pair change (single 
nucleotide polymorphism), or like mini satellites  - A long 
one [Figure 1].[4]
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Desirable properties of ideal DNA markers
•	 Easily available
•	 Assay is easy and rapid
•	 Highly polymorphic and reproducible
•	 Co-dominant inheritance and recurrent occurrence in 

genome
•	 Selectively neutral to environmental conditions or 

management practices
•	 Data exchange between different laboratories should be 

easy
•	 High genomic abundance.

It is really difficult to get a molecular marker of above 
criteria. Depending on the type of study undertaken, a 
marker system can be recognized that would fulfill the 
above characteristics.[5]

Basic Molecular Marker Techniques

Basic marker techniques can be classified into three 
categories:
1.	 Polymerase chain reaction (PCR)-based techniques
2.	 Non-PCR-based techniques or hybridization based 

techniques
3.	 Microsatellite-based marker techniques [Figure 2].

Polymerase chain reaction-based techniques
In the case of PCR-based markers, the primers of known 
sequence and length are used to amplify genomic and 
cDNA sequences which are visualized by gel electrophoresis 
technique. The invention of PCR which is a very versatile 
and extremely sensitive technique,[6] contributes to use a 
thermostable DNA polymerase and lead to the development 
of various molecular marker techniques.[7]

Randomly amplified polymorphic DNA markers
A single species of primer anneals to the genomic DNA 
at two different sites on complimentary strands of the 
DNA template. After PCR amplification, a discrete DNA 
product is obtained if these priming sites are within the 
amplification range of each other. The introduction of 

this system produces amplification of several discrete 
loci.[8]

DNA amplification fingerprinting
In this technique, a single arbitrary primer of only five 
bases is used to amplify the DNA by PCR. For this marker 
assay gives simple banding patterns, much-optimized 
reaction conditions are required and are useful for DNA 
fingerprinting. Such banding patterns are analyzed by 
polyacrylamide gel electrophoresis.[9] Arbitrary primed PCR 
(AP-PCR).

DNA amplification patterns are obtained using single 
primer of 10–50 bases long in PCR and annealing is carried 
out under nonstringent conditions.[10]

Sequence characterized amplified regions
Sequence characterized amplified regions (SCARs) are 
similar to sequence tagged sites (STS) markers but in 
comparison to random amplified polymorphic DNA (RAPD) 
they are more reproducible. Although SCARS are mostly 
dominant markers, also behave as co-dominant markers by 
digesting them with tetra cutting restriction enzymes. Sex 
identification of papaya has been carried out using SCAR 
marker.[11]

Cleaved amplification polymorphic sequence
PCR primers for this process can be synthesized based on 
sequence information in databank and the electrophoretic 
patterns are obtained using restriction enzyme digestion of 
the PCR products.[12,13]

Randomly amplified microsatellite polymorphism
The methodology of these PCR based markers is that 
first the genomic DNA is amplified using the arbitrary 
(RAPD) primers. The amplified products thus obtained 
are then separated electrophoretically and the dried gel 
is hybridized with microsatellite oligonucleotide probes. 
Many advantages of oligonucleotide fingerprinting,[14] 
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RAPD[15] and microsatellite primed-PCR are thus combined 
in randomly amplified microsatellite polymorphism.[16,17] 
Advantages include speed of the assay, high sensitivity, high 
level of variability detected and no requirement of prior 
DNA sequence information.[18]

Amplified Fragment Length Polymorphism

Amplified fragment length polymorphism (AFLP) was 
developed for detection of genomic restriction fragments 
by PCR amplification, thus fingerprinting patterns are 
obtained. AFLP is an ingenious combination of restriction 
fragment length polymorphism (RFLP) and PCR.[19] In 
the detection of polymorphism between closely related 
genotypes AFLP is extremely useful.[20,21]

Nonpolymerase Chain Reaction-based 
Techniques

In the hybridization-based markers or non-PCR based 
marker, the DNA profiles are visualized by hybridizing the 
restriction enzyme digested DNA to a labeled probe which is 
a DNA fragment of known/unknown sequence.

Restriction fragment length polymorphism
The RFLP analysis consists of, restriction endonuclease 
digested genomic DNA is resolved by gel electrophoresis and 
then blotted on to a nitrocellulase membrane.[22] Specific 
banding patterns are then visualized by hybridization with 
a labeled probe. RFLP are very reliable markers on linkage 
analysis and breeding and are co-dominant in nature. To 
constructs a genetic map RFLPs were used for the 1st time to 
construct a genetic map.[23]

Detailed below are the modifications of the RFLP marker 
system.

Sequence tagged sites
In this, RFLP probes specifically linked to a desired trait 
can be converted into PCR based STS oligonucleotide 
primers based on nucleotide sequence of the probe giving 
a polymorphic band pattern. This is extremely useful for 
studying the relationship among several species at a specific 
locus.[24]

Allele specific associated primers
Specific allele is sequenced and on the base of this 
sequence, specific primers are designed for DNA template 
amplification. From this, a single fragment at stringent 
annealing temperature condition is obtained, and there are 
used to tag given plant and the gene of interest.[25]

Expressed sequence tag markers
These are introduced for obtaining partial sequencing 
of random cDNA clones. They are also useful in genome 
sequencing and mapping programs.[26]

Single strand conformation polymorphism
This is a powerful and popularly used technique for detection 
of point mutations. It can identify heterozygosity of DNA 
fragments of the same molecular weight.[27]

Microsatellites and Minisatellites

In virtually all eukaryotic species, 30–90% of the genome 
is constituted of repetitive DNA, and its nature is highly 
polymorphic. Microsatellites and minisatellites is one 
major form of repetitive DNA.[28] With a monomer repeat 
length of about 11–60 bp, microsatellites are short tandem 
repeats or simple sequence repeats of 1–6  bp length, 
repeated several times. Thus, micro and minisatellites 
form an ideal marker system which simultaneously create 
complex banding system and detect multiple DNA loci 
simultaneously. These dominant fingerprinting markers, 
exhibit high level heterozygosity, and are of Mendelian 
inheritance.[29]

Detailed below are minisatellite and microsatellite sequence 
based markers.

Sequence tagged microsatellites sites
Using specific primers designed from sequence 22 
data of a specific loci, DNA polymorphism is detected. 
Primers complementary to the flanking regions of the 
simple sequence repeat loci yield high polymorphism. 
For clear banding pattern Di-, tri-  and tetra-nucleotide 
microsatellites are more popular for sequence tagged 
microsatellites sites analysis.[30] For diversity analysis, 
dinucleotides which are generally abundant in the genome 
have been used.[31]

Directed amplification of minisatellite-region DNA
In this case, minisatellites are used as primers for DNA 
amplification. It is introduced for the 1st time and is 
found to be useful for species differentiation and cultivar 
identification.[32,33]

Inter simple sequence repeat markers
This technique was reported for amplifying genomic DNA 
at the 3’end. They are mostly dominant markers. Number of 
primers can be synthesized for various combinations of di-, 
tri-, and tetra and penta-nucleotides.[34]

Advances in Molecular Marker Techniques

Molecular marker techniques have made advances through 
incorporation of modification in the methodology leads to 
evolution of several basic techniques.

Organelle microsatellites
Chloroplast DNA and mitochondrial DNA are considered 
to study the genetic structure and phylogenetic 
relationships in plants, organelle and genome. Compared 
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to nuclear alleles, chloroplast and mitochondrial 
genomes, due to their uniparental mode of transmission, 
exhibit different patterns of genetic differentiation.[35] 
Thus, for a widespread understanding of plant population 
delineation and evolution, three interrelated genomes 
must be considered, namely nuclear microsatellites, 
chloroplast and mitochondrial microsatellites have also 
been developed. Chloroplast microsatellites consisting of 
relatively short and several mononucleotide sequences 
are ubiquitous and polymorphic components of 
chloroplast DNA.[36] Chloroplast genome-based markers 
uncover genetic discontinuities and distinctiveness 
among or between taxa with slight morphological 
differentiation,  which nuclear DNA markers cannot 
reveal sometime.[37]

Sequence-related amplified polymorphism
Sequence-related amplified polymorphism (SRAP) is based 
on two-primer amplification, mainly 17–21 nucleotides 
in length. For polymorphism detection SCRAP uses pairs 
of primers with AT- or GC-rich cores to amplify intragenic 
fragments. The amplification of open reading frames is 
the aim of SCRAP technique, SRAP combines simplicity, 
reliability, moderate throughput ratio, and facile sequencing 
of selected bands.[38]

Target region amplification polymorphism
The Target region amplification polymorphism technique is 
a PCR-based convenient technique, which utilizes expressed 
sequence tag (EST) database information and bioinformatics 
to generate around targeted candidate gene sequences, 
polymorphic markers. The fixed primer is designed from the 
targeted EST sequence in the database; the second primer 
is an arbitrary primer with either an AT- or GC-rich core to 
anneal with an intron or exon.[39]

Transposable elements-based molecular markers
The mobile genetic elements which are capable of changing 
their location in the genome are known as transposons and 
were discovered in maize almost 60 years ago. Transposable 
elements, consists of two broad classes and each with its 
own characteristics properties.[40] Retroelements, such as 
retrotransposons, short interspersed nuclear elements, 
and long interspersed nuclear elements, it is the element-
encoded mRNA, and not the element itself, that forms the 
transposition intermediate. The original copy remains intact 
at the donor site each transposition event creates a new 
copy of transposons. In contrast, Class  II consists of DNA 
transposons, which change their location in the genome by 
a “cut and paste” mechanism.[41]

Retrotransposon-based molecular markers
Retrotransposons are the major class of repetitive DNA 
comprising 40–60% of the entire genome in plants with 
large genomes.[42] Retrotransposons can be divided into 

three categories based on structural organization and 
amino acid similarities among their encoded reverse 
transcriptases. Long terminal direct repeats (LTRs) flank 
two of these categories and they encode proteins similar 
to the retroviruses. These LTR-retrotransposons are 
known as gypsy-like and copia-like retrotransposons. 
The LINE1-like or non-LTR retrotransposons are third 
class of retrotransposons and they lack terminal repeats 
and encode proteins with significantly less similarity 
to those of the retroviruses. The replicating process of 
retrotransposons is by successive transcription, reverse 
transcription, and insertion of the new cDNA copies 
back into the genome, copia-like[43,44] and gypsy-like 
retrotransposons[45] are present throughout the plant 
kingdom.

Inter-retrotransposon amplified polymorphism 
and retrotransposon-microsatellite amplified 
polymorphism
Based on the position of given LTRs within the genome 
inter-retrotransposon amplified polymorphism (IRAP) and 
REMP are two amplification based marker methods which 
have been developed. Proximity of two LTRs using outward-
facing primers annealing to LTR target sequences generate 
the IRAP markers. In retrotransposon-microsatellite 
amplified polymorphism, amplification between LTRs 
proximal to simple sequence repeats such as constitutive 
microsatellites produces markers.[45]

Sequence-specific amplification polymorphism
The technique was first used to investigate the location 
of BARE-1 retrotransposons in the barley genome.[46] In 
principle, it is a simple modification of the standard AFLP 
protocol.[47]

Retrotransposon-based insertion polymorphism
Using the PDR1 retrotransposon in the pea, this technique 
was developed this technique requires the sequence 
information of the 50 and 30 regions flanking the 
transposons.[48]

RNA-based Molecular Markers

Biological responses and developmental programming 
are regulated by the precise control of genetic expression. 
Obtaining in depth information about these processes 
necessitates the study of differential patterns of gene 
expression. PCR-based marker techniques, such as, 
cDNA, AFLP, and RNA fingerprinting by arbitrarily 
primed Polymerase chain reaction (RAP-PCR) are used for 
differential RNA study selective amplification of cDNAs. 
Replicated tests show that cDNA-single strand conformation 
polymorphism reliably separates duplicated transcripts with 
99% sequence identity.[49]
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RNA fingerprinting by arbitrarily primed polymerase 
chain reaction
Arbitrarily primer at low stringency for first and second 
strand cDNA synthesis followed by PCR amplification 
of cDNA population involves fingerprinting of RNA 
populations. The method requires nanograms of total 
RNA and is unaffected by low levels of genomic DNA 
contamination.[50]

cDNA-amplified fragment length polymorphism
A novel RNA fingerprinting technique to display differentially 
expressed genes is cDNA-AFLP technique.[51] The 
methodology includes digestion of cDNAs by two restriction 
enzymes followed by ligation of oligonucleotide adapters 
and PCR amplification using primers complementary to the 
adapter sequences with additional selective nucleotides at 
the 30 end.[52] The cDNA-AFLP technique is a more stringent 
and reproducible than RAP-PCR.[53]

DNA Barcoding

Apart from other technique, it is a dominant method for 
species identification and discovery since other methods 
have various limitations and cannot be used in a large 
scale or in an efficient manner. DNA barcoding uses a 
short genetic marker in an organism’s DNA to identify 
it as belonging to a particular species. It distinguishes 
from molecular phylogeny in that the main aim is not to 
determine classification but to identify an unknown sample 
in terms of a known classification.[54] Although barcodes are 
sometimes used in an effort to identify unknown species or 
assess whether species should be combined or separated, 
such usage, if possible at all, pushes the limits of what are 
barcodes capabilities.[55]

Comparison of various aspects of widely used molecular 
marker techniques [Table 1].

Applications are Prospect of Pharmaceutical 
Sciences

Pharmacognostic application
Pharmacognosy generally related to quality-control 
issues using routine organoleptic parameters of crude 
drugs. DNA-based techniques have been widely used for 
authentication of plant species of medicinal importance. 
Since certain rare and expensive medicinal plant species are 
often adulterated or substituted by morphologically similar, 
easily available, or less expensive species. For example, 
Swertia chirata is frequently adulterated or substituted by 
the cheaper Andrographis paniculata, therefore, additional 
methods of identification at the species level have been 
sought and genome-based methods have been developed 
for the identification of medicinal plants starting in the 
early 1990’s.[56-59] This work was greatly facilitated by the 

invention of the PCR and the introduction of a heat-stable 
DNA polymerase from the thermophilic bacterium. At 
present, a practical and powerful tool, i.e.  DNA barcodes, 
is developed for identifying medicinal plants and their 
adulterants in trade and for ensuring safety in their 
use.[60] (CBOL Plant Working Group, 2009). Among the 
PCR-based molecular techniques, RAPD is convenient in 
performance and does not require any information about 
the DNA sequence to be amplified.[61] Due to its procedural 
simplicity, the use of RAPD as molecular markers for 
taxonomic and systematic analyses of plants.[62] As well as 
in plant breeding and the study of genetic relationships, 
has considerably increased.[63] Recently, RAPD has been 
used for the estimation of genetic diversity in various 
endangered plant species.[64-68]

This technique remains important in plant genome research 
with its applications in pharmacognostic identification and 
analysis.

Pharmacological application
Genetic markers can be used to study the relationship 
between an inherited disease and its genetic cause (e.g., 
a particular mutation of a gene that results in a defective 
protein). Genetic markers have to be easily identifiable, 
associated with a specific locus, and highly polymorphic, 
because homozygotes do not provide any information. 
The methods used to study the genome or phylogenetics is 
RFLP, AFLP, RAPD, SSR. They can be used to create genetic 
maps of whatever organism is being studied. The presence 
of different alleles due to a distorted segregation at the 
genetic markers is indicative of the difference between 
selected and nonselected livestock. Endosomal sorting 
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Contd...

Table 1: Examples of some medicinal plants and different marker used for various studies and their results
Plants name (family) (reference) Markers used Purpose and results

Achillea species (Asteraceae)[70] AFLP Nine AFLP primer combinations were used, which produced 301 polymorphic bands. In most 
species, a high level of genetic variation was detected among the genotypes

A. calamus (Araceae)[71] RAPD To study genetic relatedness among accessions. 40 random primers used, 6 primers 
generated polymorphism

A. mongolicus (Leguminosae)[72] ISSR 39 out of 99 clear reproducible bands produced while in Acrobeloides nanus, 29 out of 112 
were polymorphic

A. formosanus (Orchidaceae)[73] AFLP, ISSR To assess the genetic variation the total of6 out of 81 primers screened, generating a 
total of 26 markers, were able to differentiate the 4 lines in the inter single sequence 
repeat (ISSR) analysis. On the other hand, 17 sets of AFLP primers were chosen to detect 
the somatic variation among the excised shoots derived from the same individual

A. indica, A. Juss (Meliaceae)[74] AFLP, SAMPL AFLP and SAMPL were employed to measure the genetic variation the average genetic 
similarity values based on Jaccard’s coefficient were 0.80 and 0.68, respectively

A. tetracantha (Salvadoraceae)[75] RAPD A total of 29 bands were amplified among 6 accessions using 5 primers and the polymorphic 
bands were 27

B. monnieri (Scrophulariaceae)[76] RAPD Among the 40 random primers tested, 29 primers generated one or more polymorphic bands. 
The number of polymorphic bands generated was primer dependent, ranging from 2 to 
8 maximum of 8

Boesenbergia spp. 
(Zingiberaceae)[77]

RAPD 19 accessions of Zingiberaceae belonging to 11 species of Boesenbergia, six species of 
Kaempferia, and two species of Scaphochlamys. 53 amplified bands were observed

C. roseus (Apocynaceae)[78] RAPD, ISSR The RAPD primers resulted in the amplification of 56 bands, among which 46 (82%) bands 
were polymorphic Four ISSR primers amplified 31 loci of which 17 were polymorphic and 14 
are monomorphic

C. smyrnioides (Apiaceae)[79] ISSR 100 primers screened, 18 produced highly reproducible ISSR bands. Using these primers, 
196 discernible DNA fragments were generated with 166 (84.7%) being polymorphic, 
indicating considerable genetic variation at the species level. In contrast, there were 
relatively low levels of polymorphism at the population level with the PPB ranging from 29.6 
to 36.2%

C. morifolium (Asteraceae)[80] ISSR, SRAP 182 ISSR marker ‑ fragments, as amplified by 22 primers (the PPB: 81.87%), and 243 
SRAP marker ‑ fragments as generated by 26 primer pairs (PPB: 75.72%)

C. lanatus (Cucurbitaceae)[81] ISSR 21 ISSR primers screened, 11 gave bands varying from discrete to large
C. speciosus Koen ex.Retz. 
(Zingiberaceae)[82]

RAPD 12 decamer random primers was used Four primers showed appreciable molecular 
polymorphism at amplicon levels

C. pepo (Cucurbitaceae)[83] ISSR, AFLP, SSR 14 AFLP primers yielded 448 bands of which 280 were polymorphic. Of the 147 ISSR 
bands scored 108 were polymorphic and SSR scored 20 SSR amplification products

C. longa L. (Zingiberaceae)[84] RAPD 25 RAPD primers; no significant variation was observed in RAPD profiles of mother plants
C. reflexa (Convolvulaceae)[85] RAPD 32 decamer oligonucleotide primers were used to amplify the genomic DNA isolated from 

the dried stems as well as seeds of both the species. Out of the eleven gave faint and 
non‑reproducible, while seven gave species‑specific reproducible unique bands

D. officinale (orchidaceous)[86] RAPD, ISSR 104 reproducible bands were generated using twelve ISSR primers of which 97 were 
polymorphic, 150 bands produced by RAPD of which 14 were polymorphic

D. obscura (Scrophulariaceae)[87] RAPD Seven primers, selected for DNA amplification of D. obscura which showed a high degree of 
polymorphism among genotypes from different regions or within the same collection area

E. purpurea (Asteraceae)[88] AFLP A total of 40 regenerants and 5 donors, using eight primer pairs. The results indicated that 
a total of 3805 scorable fragments were observed, of which 301 (9.40%) were polymorphic

E. woodii (Zamiaceae)[89] RAPD, ISSR RAPD showed 134 bands of which 110 were polymorphic, while ISSR showed 110 bands 
of which 86 were polymorphic

E. ventricosum (Musaceae)[90] RAPD 126 oligonucleotide primers initially screened, 12 were chosen that together generated 97 
reproducible polymorphic bands Genetic variation within collection sites was relatively high, 
with values for the Shannon‑Weaver diversity index ranging from 0.44 to 0.55

F. carica L. (Moraceae)[91] ISSR A total of 33 alleles were detected. A high level of genetic diversity was identified inter 
cultivars. The clustering grouped the studied cultivars into four clusters with no correlation 
to geographical origins

F. vesca (Rosaceae)[92] ISSR The 23 selected ISSR primers combinations generated 345 amplicons
G. elata Bl. (Orchidaceae)[93] RAPD, cloning, 

sequencing and 
bioinformatics 
analyses

The distribution of the five DNA sequences varied greatly among the populations. DNA 
sequences 1 and 5 were found in all the populations studied and determined to be specific 
DNA molecular markers that differentiate Gastrodia from other species

G. Kurroo (Gentianaceae)[94] RAPD 20 RAPD primers, 5 displayed the same banding profile within all the micropropagated 
plants and donor mother plant
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Table 1: Contd...
Plants name (family) (reference) Markers used Purpose and results

H. ringens (Lamiaceae)[95] RAPD, ISSR 17 RAPD primers produced 126 bands of which, 89 were polymorphic (PPB 70.63%), while 
ISSR amplified 53 bands of which 24 were polymorphic (PPB 45%)

I. younghusbandii (Bignoniaceae)[96] AFLP Seven AFLP primer pairs produced 332 reliable bands, of which 185 were 
polymorphic (55.7%). The number of bands per primer combinations ranged from 38 to 59

I. mauritiana Jacq 
(Convolvulaceae)[97]

RAPD, SCAR Identification DNA‑based markers have been developed to distinguish I. mauritiana from the 
other Vidari candidates

L. szemaois (Lauraceae)[98] AFLP, ISSR Three AFLP primers produced 203 of which 164 were polymorphic and ten ISSR primers 
produced 77 bands of which 67 were polymorphic

L. angustifolius (Fabaceae)[99] AFLP, ISSR 3 ISSR primers produced a total of 25 bands of which 6 were monomorphic. 2 AFLP primers 
produced 82 bands with 50 were monomorphic

M. officinalis (Magnoliaceae)[100] ISSR Twelve primer combinations produced a total of 137 unambiguous bands of which 
114 (83.2%) were polymorphic

M. chamomilla (Compositae)[101] RAPD 29 reliable primers that were used, 369 bands were detected and from which 314 (85.44%) 
bands were polymorphic

M. charantia L. (Cucurbitaceae)[102] RAPD 29 primers are used which generated a total of 208 reproducible bands, of which 
76 (36.50%) were found polymorphic

N. insignis (Asteraceae)[103] ISSR 11 primers produced 103 reliable ISSR bands, of which 67 were polymorphic
O. europea (Oleaceae)[104] RAPD, ITS‑1, 

ISSR
Phylogenetic relationship in the O. europea complex and phylogeography of 24 populations 
of O. europea were assessed by using nuclear ribosomal ITS‑1, RAPD and ISSR

P. bracteatum (Papaveraceae)[105] AFLP The two primer combinations generated 254 polymorphic markers
P. emblica L. (Euphorbiaceae)[106] RAPD Four primers collectively produced 33 polymorphic bands in these varieties
P. lentiscus L. (Anacardiaceae)[107] RAPD For characterization of the genetic variability of Mediterranean P. lentiscus genotypes by 

RAPD. dendrogram based on RAPD analysis gave two main clusters according to their 
geographical origins

P. corylifolia L. (Fabaceae)[108] AFLP To know the variable lengths and independent nature of Ri T‑DNA integrations into their 
genomes using five combinations of EcoRI and MseI primers with three selective nucleotides

Rattan genotypes[109] RAPD 12 primers gave reproducible amplification profiles and 104 polymorphic bands. 
A considerable degree of polymorphism (98.1%) was detected among the genotypes

R. glutinosa (Scrophulariaceae)[110] RAPD, ISSR RAPD primers and ISSR primers amplified average 16.00 and 19.08 bands respectively and 
the PPBs was 89.58% and 94.32% respectively

R. tanguticum (Polygonaceae)[111] ISSR Thirteen selected primers produced 329 discernible bands, with 326 (92.94%) being 
polymorphic, indicating high genetic diversity at the species level

R. alsia (Crassulaceae)[112] ISSR 100 primers were screened, 13 produced 140 loci of which 112 (PPB 80%) were 
polymorphic

R. chrysanthemifolia 
(Crassulaceae)[113]

ISSR 100 primers were screened, 13 produced highly polymorphic DNA fragments. Using these 
primers, 116 discernible DNA fragments were generated of which 104 (89.7%) were 
polymorphic

R. rosea (Crassulaceae)[114] AFLP AFLP analysis of 97 R. rosea clones using five primer combinations gave a total of 109 
polymorphic bands

S. muticum (Fucales, 
Phaeophyta) (Sargassaceae)[115]

RAPD, ISSR 24 RAPD primers amplified 164 loci of which 124 were polymorphic and 19 ISSR primers 
amplified 122 loci

Stachys species (Labiatae)[116] RAPD Two primers namely OPD6 and OPD14, revealed a DNA polymorphism of the two callus 
types

Warburgia (Canellaceae)[117] AFLP Four AFLP primer pairs (EcoRI/MseI) generated a total of 185 amplification products
W. somnifera (Solanaceae)[118] AFLP Among 64 primers 7 yielded optimum polymorphism. A total of 913 polymorphic peaks were 

generated using these primers
A. calamus – Acorus calamus; A. mongolicus – Ammopiptanthus mongolicus; A. formosanus – Anoectochilus formosanus; A. indica – Azadirachta 
indica; A. tetracantha – Azima tetracantha; B. monnieri – Bacopa monnieri; C. roseus – Catharanthus roseus; C. smyrnioides – Changium 
smyrnioides; C. morifolium – Chrysanthemum morifolium; C. lanatus – Citrullus lanatus; C. speciosus – Costus speciosus; C. pepo – Cucurbita pepo; 
C. longa – Curcuma longa; C. reflexa – Cuscuta reflexa; D. officinale – Dendrobium officinale; D. obscura – Digitalis obscura; E. purpurea – Echinacea 
purpurea; E. woodii – Encephalartos woodii; E. ventricosum – Ensete ventricosum; F. carica – Ficus carica; F. vesca – Fragaria vesca; G. elata – Gastrodia 
elata; G. Kurroo – Gentiana Kurroo; H. ringens – Hesperozygis ringens; I. younghusbandii – Incarvillea younghusbandii; I. mauritiana – Ipomoea 
mauritiana; L. szemaois – Litsea szemaois; L. angustifolius – Lupinus angustifolius; M. officinalis – Magnolia officinalis; M. chamomilla – Matricaria 
chamomilla; M. charantia – Momordica charantia; N. insignis – Nouelia insignis; O. europea – Olea europea; P. Bracteatum – Papaver Bracteatum; 
P. emblica – Phyllanthus emblica; P. lentiscus – Pistacia lentiscus; Psoralea corylifolia – Psoralea corylifolia; R. glutinosa – Rehmannia glutinosa; 
R.  tanguticum – Rheum tanguticum; R. alsia – Rhodiola alsia; Rhodiola chrysanthemifolia; R. chrysanthemifolia  –  Rhodiola chrysanthemifolia; 
R.  rosea  –  Rhodiola rosea; S. muticum – Sargassum muticum; W. somnifera – Withania somnifera; PPB – Percentage of polymorphic bands; 
ITS‑1  –  Internal transcribed spacer‑1; RFLP – Restriction fragment length polymorphism; RAPD – Random amplified polymorphic DNA; 
ISSR – Inter‑simple sequence repeats; AFLP – Amplified fragment length polymorphism
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receptors, useful as molecular markers to define plant 
endosomal compartments are, for example, the vacuolar 
sorting receptor (VSR) BP-80 from pea (Pisum sativum) 
and its Arabidopsis homolog AtELP1, which are known to 
predominantly associate with prevacuolar compartments/
multivesicular bodies.[68]

Pharmaceutical application
Molecular markers in pharmaceutics relate to drugs and 
drug development, for example, in silico drug profiling 
of the human kinome based on a molecular marker for 
cross-reactivity.[69] Molecular markers focus on molecular 
mechanistic approaches to the development of bio-
available drugs as well as concentrates on the integration 
of applications of the chemical and biological sciences 
to advance the development of new drugs and delivery 
systems.

Other application in plant genome
Examples of some medicinal plants and different marker 
used for various studies [Table 2].
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