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The regulatory effects of Bifidobacterium infantis on the 
secretomotor activity of the enteric nervous system

Abstract

Background: Bifidobacterium infantis (BI) and other probiotics are non‑pathogenic living organisms that have 
gained increased attention for their possible therapeutic implications on the health of the digestive tract. The 
mechanisms by which probiotics exert their effects are largely unknown.Aims: This study explored the protective 
and regulatory effect of oral BI on the enteric nervous system in the 2, 4, 6‑trinitrobenzene sulfonic acid‑induced 
colitis rats. Materials and Methods: Electrical field stimulation and chemical stimulation by 5 hydroxytryptamine 
or serotonin were used to elicit changes in short‑circuit current response of the colonic rat tissue. Results: 
BI‑fed colitis rats expressed trends of higher secretomotor activity and revealed signs of decreased macroscopic 
inflammatory damage when compared to sham‑fed colitis rats, suggesting a protective and preventative role 
of oral BI. Conclusion: These findings may provide additional insights for understanding the prophylactic 
and therapeutic value of specific probiotics in intestinal inflammatory disorders, offering the possibility of a 
non‑invasive alternative to toxic and immune‑compromising drugs.
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Introduction

Inflammatory bowel diseases
Digestive motility and secretion are regulated in order to 
maximize the digestion and absorption of ingested food. 
Maintaining fluid homeostasis is one of the many important 
roles of the gastrointestinal  (GI) tract. Approximately, 9 L 
of fluid enters the small intestine on a daily basis, of which 
80‑85% is absorbed into the body. When homeostasis is 
challenged by pathogens or injury, inflammation occurs and 
the GI tract switches the balance from an absorptive state to 
a secretory state. This change results in a loss of electrolytes 
and water in the feces, leading to diarrhea.[1‑4]

An inflammatory bowel disease  (IBD) greatly disrupts 
an individual’s quality of life and at this time has no cure. 
Crohn’s disease and ulcerative colitis (UC) are the two most 
common IBDs. UC is a chronic inflammatory disease that 
acts on the lining of the colon and rectum. It is estimated 

that nearly 1.5 million Americans suffer from these IBDs,[5] 
which are responsible for 2.3 million physician visits,[6] 
180,000 hospital visits,[7] and costs $6.3 billion annually.[8] 
IBDs are most commonly seen in Europe and North America. 
The primary symptoms of UC‑diarrhea, abdominal pain, 
and urgency of defecation – are the result of non‑immune 
cell dysfunction and superficial inflammation of the gut 
wall. These cells are typically smooth muscle cells, enteric 
neurons, and epithelial cells that regulate the motility and 
transport function of the colon.[9‑11]

Microbial flora and the colon: A symbiotic relationship
It is estimated that the gut harbors 400‑1000 different 
bacterial species.[12,13] These colonic micro‑organisms are 
typically harmless and oftentimes beneficial. The microbial 
flora has the ability to out compete pathogenic microbes 
for nutrient and space, providing a degree of intestinal 
immunity and also help promote and regulate colonic 
motility and mucosal layer integrity.[3,14] The microbial 
flora and its interactions to maintain the health of the 
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digestive system has been an interest of study in recent 
years. Colonization of the gut begins immediately at birth 
and is influenced by diet, hygiene, and medications. Studies 
have demonstrated different gut flora modulate different 
environments. Overall, it is thought that a healthy gut flora 
has the ability to maintain vascularity, digestive enzyme 
activity, and immune response.[14]

Probiotic therapy: Bifidobacterium infantis
Many diseases of the GI tract result from an imbalance 
in the normally occurring GI flora.[15] Probiotics are 
live micro‑organism supplements that can colonize in 
the intestine to help provide microbial balance to the 
host.[16] This balance plays a pivotal part in preventing the 
over‑growth of potentially pathogenic bacteria, which “helps 
maintain the integrity of the gut mucosal barrier.”[17] Unlike 
traditional pharmacological therapies, probiotics are living 
organisms that are not metabolized or excreted from the 
body.[18] Probiotics protect themselves in acidic conditions 
and immune responses of the upper GI and make it through 
the digestive tract to colonize in the lower intestine.[19] No 
two probiotics are the same and direct comparisons from 
one strain to another should be avoided.[20] Previous 
research has focused on Lactobacillus, Bifidobacterium, and 
Propionibacterium species, yet additional investigation is 
needed to clarify the importance of individual strains.[10] BI 
is a specific probiotic that has been found to help in cases 
of digestive disorders.[21‑24] BI has been linked to keeping 
a healthy colon and has been shown to colonize more 
efficiently in the human gut than other strains of bacteria, 
especially in the descending colon.[25,26] Bifidobacterium 
strains are thought to work in a number of ways to enhance 
the GI environment, (e.g., by influencing both the microbial 
and host physiology).[4,27]

Enteric nervous system
Digestive functions are controlled through complex 
interactions between the extrinsic and intrinsic neural 
innervations, as well as hormonal inputs and secretions. The 
enteric nervous system (ENS) is an extensive nerve network 
in the wall of the digestive tract that is independent of the 
rest of the nervous system. Links have been established 
between the ENS and the microbial flora that demonstrates 
probiotics work with the brain‑gut system to help modulate 
GI function.[13,28] The ENS has nerve endings adjacent to 
the mucosal side of the absorptive epithelial cells. This 
location provides an ideal place for interaction and response 
to luminal bacteria, representing an essential connection 
between the microbes and the ENS in maintaining regular 
intestinal function.[28] Consequently, the parasympathetic 
vagal nerve and ENS have been increasingly recognized for 
their diverse GI signaling in helping regulate inflammatory 
responses.[29]

The chronic inflammation seen in UC leads to alterations in 
the neurotransmission, muscle contractility, and secretory 

functions.[30] Changing the secretomotor activity of the 
colon produces the symptoms seen in UC such as diarrhea, 
pain, and the potential for dehydration. It has been 
suggested that probiotics, such as BI, establish a “cross‑talk” 
or “communication” with the host immune system.[31] This 
communication helps modulate immunity of the hosts 
system through several signal mediators but the exact 
mechanism is still unknown. Evidence suggests that the ENS 
may play a role, but the specific effects of probiotics on the 
ENS have not yet been studied.[25] Thus, the purpose of this 
investigation was to explore the protective and regulatory 
effect of oral BI on the ENS in the 2,4,6‑trinitrobenzene 
sulfonic acid (TNBS)‑induced colitis rats.

Objective
Recent studies have demonstrated that probiotics can 
decrease inflammation in the GI tract; but the mechanism 
through which this occurs is still unclear.[21,28] Therefore, the 
purpose of this study was to examine the effects of chemical 
and electrical stimuli on the intestinal secretormotor 
response by using 5 hydroxytryptamine or serotonin (5‑HT) 
and electrical field stimulation (EFS). 5‑HT is an instrumental 
neurotransmitter and paracrine signaling molecule for the 
bidirectional communication between the brain and the 
gut.[32] Approximately, 90% of 5‑HT in the human body is 
produced within the GI tract where serotonin‑containing 
enterochromaffin cells respond to chemical and mechanical 
stimuli by releasing 5‑HT onto afferent nerve terminals 
that initiate GI reflexes.[32,33] The GI mucosa responds to 
the chemical stimuli differently between inflamed and 
non‑inflamed tissues.[33] EFS allows for the recording of the 
short‑circuit current (Isc), which portrays the equivalent to 
the algebraic sum of electrogenic ion movement by active 
ion transport.[34] These two techniques will help determine if 
a probiotic, like BI, can alter the ENS secretomotor response 
in the UC induced rat, contributing to the understanding of 
the complex interactions that occur between the gut wall, 
intestinal microbes, immune system, and endocrine system.

Materials and Methods

Experimental design
Ten Albino male Lewis rats of similar age (8‑9 months) and 
mass (350‑550 g) were randomized and separated into two 
populations. The rats were identified with tail markings and 
placed into the sham‑fed colitis induced group or the BI fed 
colitis induced group. Laboratory living conditions were 
identical, and rats had free access to food and water. Animal 
protocol was approved by the institutional animal care and 
use committee.

Ten days prior to colitis induction probiotic was added to the 
BI fed colitis group’s water supply, and weight, water/food 
consumption, and appearance documentation began for 
both groups. On day 3, 7 days prior to the onset of colitis, 
the rats were fed orally once a day through a curved oral 
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gavage.[35,36] After 10 days  (3 days water supply and 7 days 
gavage), the rats were induced with UC that lasted for 7 days 
with continued oral feedings. At the conclusion of the 7 days, 
the rats were euthanized and tissues from the descending 
colon were harvested for Ussing chamber data collection.

Experimental protocol: Oral feedings and induction 
of colitis
The sham‑fed colitis induced groups received a daily oral 
gavage feeding of 1.0 mL distilled water, whereas the BI fed 
group received 0.205 g of BI suspended in 1.0 mL distilled 
water. BabyLife, by Solaray, is a BI powder that has 3 × 109 
colony forming units (CFU) of BI per 615 mg of powder. Oral 
feedings required a 1 × 109 CFU (54) dose, which contained 
0.205 g of BabyLife BI in 1 mL of water for the feedings.

After 7  days of oral gavage feedings, the rats were fasted 
overnight, briefly anesthetized with IsoVet (Isoflurane, 
United States Patent) (Schering‑Plough Animal Health 
Corp.), and given an enema of 1.0 mL 5% (w/v) TNBS 
(Sigma- Aldrich, USA), a chemical to induce colitis.[35‑37] 
TNBS was delivered into the lumen of the colon through a 
polyethylene catheter inserted rectally 6 cm proximal to the 
anus.[35] TNBS administration was followed by 1.0 mL of air 
to ensure acute colitis induction. The rats were then kept in 
the Trendelenburg position for 5 min. The colitis conditions 
lasted 7 days.[36] Excess discomfort was continually evaluated, 
and data was collected for weight loss, blood loss, and stool 
activity[36] so that it could be evaluated on a disease activity 
index (DAI) that ranked the disease on a 4 point scale – 1 
being normal and healthy and 4 being sickly.[38]

Experimental protocol: Tissue harvesting
After 7  days of UC the animals were euthanized with 
an overdose of IsoVet, followed by a thoracotomy. The 
descending colon of each rat was surgically removed, cleaned 
of fat and mesentery, and evaluated. Each colon was opened 
along the mesenteric border, and rinsed free of intestinal 
contents with ice‑cold Krebs bicarbonate saline solution. 
Then, the colon samples were pinned down in a culture 
dish, so that the tissue could be stretched and prepared for 
mounting.[1,39] Every tissue was evaluated by two researchers 
and scored through a macroscopic scoring rubric for scoring 
UC severity. The criteria focused on ulceration size and 
appearance, adhesions, and diarrhea.[35,39]

Experimental protocol: Ussing flux chamber
The flat sheets of full‑thickness colon tissue were mounted 
serosal side to the right in an oval CHM6 Ussing chamber. 
The Ussing chambers were bathed on either side with a 
volume of 10 mL solution containing (in mM): NaCl, 119; 
CaCl2, 1.25; MgCl2, 1; K2HPO4, 2.2; KH2PO4, 0.2; NaHCO3, 
21 and glucose, 10.[39] The solution was set at a pH of 7.4 and 
was bubbled with a gas mixture of 95% O2‑5% CO2. A water 
bath maintained a temperature of 38°C. Ag‑AgCl electrodes 
provided analysis and electrical current stimulation through 

the World Precision Instruments EVC‑4000 Precision V/I 
Clamp. 150 mM KCl was used to create a 3% agar solution 
for the electrodes that recorded Isc. Information passed 
through the EVC‑4000 to the iWorx 118 data acquisition 
system and presented through iWorx Systems, Inc., New 
Haven, USA. Tissue samples were allowed to stabilize for 
30‑40  min to create a consistent baseline Isc reading.[39] 
5‑HT was used to create a chemical stimulus.[1,39] Previous 
“in home” laboratory experiments found a concentration of 
1 × 10−4 M to be effective. 5‑HT was added to the serosal 
side of the mounted tissue and recorded for 3‑5 min. EFS 
was given through the EVC‑4000 at 0.1 A of continuous 
stimulation. Stimulations lasted for 20‑30 s. Both chemical 
and electrical Isc recordings were calculated by taking 
the difference between the maximum current during 
stimulation by the initial basal levels.[1]

Statistical analysis
Data was expressed as means±SEM independent sample 
t‑tests were used to test for the significance between two 
group means of the chemical and electrical tissue response, 
and analysis of variance (ANOVA) with post‑hoc test, Sidak, 
were conducted to examine observational data of the BI‑fed 
and sham‑fed rats before and after the induction of UC. 
Categorical analysis was conducted with Chi‑square tests. 
Results were considered significant at P ≤ 0.05.

Results

Observational data: Weight, food intake, water 
intake, and DAI
Pre‑TNBS percent body weight change between the BI‑fed 
and sham‑fed rats was statistically insignificant  (P=0.3), 
but after the induction of TNBS the BI‑fed rats presented 
with a significantly decreased percent body weight than 
the sham‑fed rats (P=0.05) [Figures 1 and 2]. The weights 
correlated with the food intake, which found that after the 
first 6 days of TNBS the BI‑fed rats ate significantly more food 
than the sham‑fed rats (P=0.05) [Figure 3]. These findings 
propose a reduction of UC symptom with BI‑feedings. This 
trend can be seen on the DAI scores taken throughout 
the pre‑feedings and TNBS time period  [Figure  4]. Water 
intake for the BI‑fed rats was significantly more before 
and after TNBS (P<0.001) when compared to the sham‑fed 
rats. Interestingly, the BI‑fed rats drank significantly 
more water after TNBS than before  (P<0.001), but 
the sham‑fed rats displayed no significant difference 
between water consumption before and after TNBS 
induction (P=0.095) [Figure 5]. Observational results were 
compared using an ANOVA (with a weight of 5) to evaluate 
the BI‑fed and sham‑fed, pre‑ and post‑TNBS data.

Macroscopic scoring of colonic inflammation and 
examination of other organs
Visual observation scoring by two researchers yielded 
significant morphological inflammatory changes in the 
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Figure 1: Average daily weight. Even before 2,4,6‑trinitrobenzene 
sulfonic acid induction the rat weights from both groups declined, 
perhaps from the stress of the oral feedings. Weight loss 
between the groups was statistically insignificant prior to TNBS 
induction. A sharp decrease in weight is seen between day 8 and 
9 because of the overnight fasting. Data expressed as daily group 
means±SEM. Please reference Figure 9b for post‑TNBS induction 
weights (n=5). w – Water no feeding; o – Oral feeding; C – Colitis 
induction; e – Euthanized
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Figure 2: Change in % body weight between first and last 
day of ulcerative colitis. Data expressed as means±SEM. The 
percent weight loss was calculated between the first day and 
last day of colitis. The BI‑fed rats lost significantly less weight 
over the ulcerative colitis time period (*P=0.05). Tested with an 
independent sample t‑test (n=5)
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Figure 3: Average daily food intake. Food intake prior to TNBS 
induction was not significantly different. After the 1st 6 days 
of ulcerative colitis the BI‑fed rats ate significantly more food 
(*P=0.05). Data expressed as means±SEM and analyzed with 
a weighted 5 ANOVA to account for small sample size (n=5). 
w – Water no feeding; o – Oral feeding; C – Colitis induction; 
e – Euthanized
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Figure 4: Disease activity index scores. At day 9, the 1st day 
of ulcerative colitis, a steep increase was seen in both groups. 
The score appears to decrease at a faster fate in the BI‑fed rats, 
correlating with food, weight, and macroscopic colon damage 
data. Data expressed in means±SEM (n=5). w – Water no 
feeding; o – Oral feeding; C – Colitis induction; e – Euthanized

BI‑fed versus sham‑fed colitis rats  (categorical Chi‑square 
weighted 2, P=0.007; independent sample t‑tests weighted 
5, P=0.001) [Figure 6]. In addition, rough visual examination 
of the sham‑fed rats’ small intestine displayed more 
counted Peyer’s patches per 1 inch section when compared 
to the BI‑fed rats. Results from the macroscopic colonic 
inflammation and small intestine Peyer’s patches suggest 
that BI decreases inflammation, which is evident from the 
decrease in the level of colonic ulceration, intestinal and 

peritoneal adhesions, wall thickness, and presence of Peyer’s 
patches in the BI‑fed rats.

Chemical and electrical response
5‑HT chemical stimulation of the colonic tissue (n=5) 
displayed no significance between the BI‑fed and sham‑fed 
rats  (P=0.922) [Figure 7]. A sample size of four per group 
was used for the EFS, because group 4 (rat 4 and rat 10) had 
a tissue sample that tore before the EFS could be applied. 
The EFS evoked an increase in Isc above the baseline in both 
the sham‑fed (104.4±7.02 mV) and BI‑fed (113.0±5.95 mV) 
tissues [Figure 8]. The response of the BI‑fed rats tended 



Javed, et al.: The regulatory effects of Bifidobacterium infantis

 118 Chronicles of Young Scientists� Vol. 4 | Issue 2 | Jul-Dec 2013 118 

Figure 5: Daily average water intake. Water intake was 
significantly higher than the sham‑fed rats before and after 
2,4,6‑trinitrobenzene sulfonic acid induction (*P<0.001). 
Bifidobacterium infantis‑fed rats drank significantly more water 
post‑TNBS than pre‑TNBS (¥P<0.001). Data expressed as 
means±SEM and analyzed with a weighted 5 ANOVA to account 
for small sample size (n=5). w – Water no feeding; o – Oral 
feeding; C – Colitis induction; e – Euthanized
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Figure 6: Macroscopic colonic tissue scores. The macroscopic 
damage seen in the dissected rat colon was significantly 
decreased in the Bifidobacterium infantis‑fed rats (*P=0.007). 
Data expressed as means±SEM and analyzed with a weighted 
5 t‑test P=0.007 and weighted two Chi‑square (P=0.001) to 
account for the small sample size (n=5)
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Figure 7: Chemical stimulation by 5 hydroxytryptamine or 
serotonin (5‑HT). Data expressed in means±SEM. 5‑HT chemical 
stimulation was not statistically different between the two 
groups. Independent sample t‑test, P=0.922 (n=5)
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Figure 8: Average electric field stimulation. Data expressed in 
means±SEM. Electrical field stimulation was not statistically 
different between the two groups. Independent sample t‑test, 
P=0.387 (n=4)

to have greater EFS than the sham‑fed [Figure 9], however, 
like the chemical stimulus, the EFS of the colonic tissue 
exhibited no significant difference between the BI‑fed and 
sham‑fed rats (P=0.387).

Discussion

A practical and effective treatment for IBD is still under 
investigation. Recently, significant attention has focused 
on the possibilities of probiotics.[4,38,40,41] However, no 
research to date has explained the mechanism for how 
these probiotics work.[42] Furthermore, BI has been found 
to provide protective effects without the presence of 
an intact vagus nerve, suggesting that probiotics may 

interact within a localized response such as the ENS.[28,36] 
The interaction between the ENS and probiotics remains 
a strong area of interest, and it has been suggested that 
the intestinal microflora may act with the ENS to regulate 
inflammation.[25,29,43]

The results obtained in this study found a significant 
decrease in food consumption and weight loss, supporting 
trends from previous studies that reflect the severity of 
UC.[35,42] Correlations with the DAI score[38] and macroscopic 
tissue damage score[35,44,45] caused by UC demonstrates a 
trend for decreased inflammation and symptoms within 
our BI‑fed rats. This consistency with previous studies 
portrays the usefulness of the TNBS animal model as 
an instrumental tool for advancing our understanding 
of IBD.[11]

Trends seen with a high‑low cross tabulation of EFS 
suggest BI may increase the secretomotor activity of the 
ENS [Table 1]. A possible increase in secretomotor activity 
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Figure 9: Electric field stimulation. Group 5 EFS shows a 
substantial difference between the Bifidobacterium infantis‑fed 
and sham‑fed rats (n=1) 
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of the BI‑fed tissue could be caused by several different 
events. It can be postulated that the increased secretions 
seen here were from a “healthy” flushing of the tissue. 
This may have been why the BI‑fed rats had significantly 
higher water intake after TNBS induction then before. 
However, the increased water intake was most likely due to 
an innate difference in the osmolarity of the BI‑water and 
the sham‑fed distilled water. Keeping this in view, after the 
induction of colitis, the BI‑fed rats were more capable of 
expelling the corrosive TNBS chemical than the sham‑fed 
rats, producing less severe UC.

BI did not significantly decrease the secretomotor activity 
through chemical stimulation either. It has been shown 
that 5‑HT is over stimulated in the presence of UC because 
secretions increase to expel the unwanted materials.[46] 
Perhaps, this over stimulation desensitized the tissue to the 
dosage of 5‑HT that was found to stimulate healthy colon 
tissues in previous research within our laboratory. Future 
chemical stimulation could use varying concentration 
increments to determine a disparity.

Recent studies have suggested examining the effects 
of probiotics in  vivo. Bifidobacterium breve was found to 
promote intestinal homeostasis by controlling chloride 
secretion. The Heuvelin et al.[47] study suggests that it may 
be through the decrease in the activity of serine/threonin 
kinases phosphorylating the inhibitor of NF‑kappa‑B alpha 
and p38 mitogen‑activated PK that is responsible for the 

Table 1: High‑low cross tabulation of electrical field 
stimulation
N=4 Sham‑fed Con (%) BI‑fed Exp (%)

High
Greater than 100 µ/cm2 50 100

Low
Less than 100 µ/cm2 50 0

High-Low Cross Tabulation

anti‑inflammatory effects seen in the colon epithelial cells. 
The Heuvelin et  al. study also found that the inhibitory 
effect on chloride secretion was obtained only when the 
entire bacteria complex was directly present on the tissue.[47] 
In this regard, in  vitro tissue analysis may not be able to 
explain the full extent of the interaction, and future studies 
will need to exam probiotics effects in vivo to understand the 
full scope of the microbe‑gut relationship.

In conclusion, BI did not significantly decrease the 
secretomotor activity of the ENS as originally hypothesized. 
Instead, trends found that BI may increase secretions, 
perhaps offering protection and prevention to harm 
by expelling the TNBS chemical before it damages the 
colon. For example, in humans, long‑term colitis and 
inflammation has caused damage to both the mucosa and 
submucosa layers. Probiotics may help shield these layers 
by increasing secretions, which could maintain the integrity 
of the protective system. These findings suggest that 
probiotics  like BI may be more of a maintenance therapy 
to prevent relapse, and less of a treatment for inducing 
remission.

The findings of the study will have to be considered in light 
of limitations. First, the sample size for the two groups 
in the current study was too small. Furthermore, in the 
future a milk‑based vehicle should be used with the feedings 
that supports probiotic growth. Afterwards, fecal samples 
could be collected to evaluate the presence and quantity of 
probiotic in the intestine. In addition, tissue samples were 
collected and preserved from each of the rats’ colons and 
small intestines. These samples could be used to further 
the investigation of this study through histological and 
immunological analysis. Finally, in the future the muscularis 
layer should be dissected from the colon. This would allow 
the neuronal sub‑mucosal receptors to be directly exposed 
to 5‑HT, and therefore provide more accurate readings of 
the secretory response.
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