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Bio-inspired nanomaterials and their applications as 
antimicrobial agents

Abstract

In the recent decades, the interdisciplinary field of nanotechnology has expanded extensively. A variety of 
nanoparticles (NPs) have been used for a number of specialized applications. In this era facing a major problem 
of microorganisms developing antibiotic resistance, NPs are a lucrative option. Most physical and chemical 
processes of NP synthesis are associated with drawbacks and bio-inspired NPs have now become popular. This 
review summarizes the recent developments on the biosynthesis, characterization, and applications of NPs with 
particular reference to their use as antimicrobial agents. Reviewed here is the synthesis of gold and silver NPs 
(AgNPs) by a variety of biological forms and biomolecules as well as their effectiveness toward different fungal 
and bacterial pathogens. The use of gold NPs (bio-inspired by plants, fungi, and bacteria) and AgNPs, synthesized 
by carbohydrates (of plant, animal, and microbial origin), plant parts (bark, callus, leaves, peels, and tubers), 
fungi, and bacteria have been highlighted. In addition, the use of zinc oxide NPs (although not bio-inspired) as 
novel antimicrobial agents have also been discussed.
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Introduction

In the past few decades, the field of nanotechnology has 
developed extensively. Nanotechnology, in general, refers 
to the synthesis, characterization, and applications of 
materials that are in the nanometer range (1 m = 109 nm). 
Nanometric material properties differ from the bulk 
properties. This difference is due to the very small size and 
high surface area of the former. Such nanoscale structures 
are known to bridge the gap between bulk materials and the 
atomic and molecular structures. Nanotechnology is thus 
an interdisciplinary field that involves physical, chemical, 
biological, and engineering sciences. Nanomaterials can be 
broadly grouped into two main categories: (i) organic which 
include carbon nanoparticles (NPs) such as fullerenes and 
(ii) inorganic particles such as those of noble metals (gold, 
silver, and platinum), magnetic NPs (iron, cobalt, and 
nickel), and those of semiconductors (oxides of titanium, 
zinc, cadmium) to mention a few. NPs from each of these 

categories have been used for a variety of specialized 
applications as detailed in relevant reviews.[1-8]

Two major approaches have been used for the synthesis 
of metallic NPs. The “Top-down” approach begins with 
a suitable starting structure. This structure is decreased 
in size by employing a variety of physical or chemical 
methods. The “Bottom-up” methods involve the formation 
of nanostructures through the self-assembly in an atom-
by-atom, molecule-by-molecule, or cluster-by-cluster 
manner. Biological synthesis of NPs, in general, involves 
this approach wherein, biomolecules mediate reductive 
processes and stabilize nanostructures. Most of the earlier 
studies on NP synthesis have involved the use of chemical or 
physical methods. These processes use high temperatures, 
apply radiations, include toxic chemicals, involve the 
generation of hazardous by-products, need specialized 
apparatus, and consume energy. On account of these issues, 
biological systems have emerged as effective alternatives 
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for the rapid, cost-effective, and “green” synthesis of NPs. 
In general, biological systems (plant and microorganisms) 
display a vast variety of biomolecules with reductive 
properties. These mediate a reduction of metal salts to 
nanostructural elemental forms. The nanostructures thus 
formed are capped by additional biomolecules present in the 
biological material. Microorganisms are constantly exposed 
to metals and often have inherent defense reductive 
mechanisms that mediate the synthesis of a variety of 
NPs. This property makes them some of the most lucrative 
bio-machines for the synthesis of novel materials. There 
are several reviews on bio-inspired nanomaterials with 
respect to their synthesis, the mechanisms involved, and 
applications in different fields.[9-19] However, a review on 
the applications of these bio-inspired NPs as antimicrobial 
agents is missing. The present review hopes to fill this void 
in the literature.

Nanoparticles as antimicrobial agents

Infectious diseases are major cause of mortality worldwide. 
The appearance of antibiotic-resistant pathogenic strains 
has been threatening public health globally. In some cases, 
microorganisms display multiple drug resistance. This has 
triggered a need for the development of novel therapeutic 
agents. With nanotechnology emerging as a forefront area 
in integrated science, the use of NP-based therapeutics 
for controlling pathogenic bacteria has emerged as an 
important alternative.

A variety of NPs have been explored for their antimicrobial 
properties. These include NPs of silica, silica/iron oxide, bi-
functional Fe3O4-Ag NPs, titanium, copper and aluminum, 
and those of silver, gold, and zinc, as discussed in this 
review. [20-24] The NPs when studied as antimicrobial agents 
have not necessarily been synthesized through biological 
systems. Although there are a few dedicated reviews on 
the use of bio-inspired silver NPs (AgNPs) as antimicrobial 
agents,[15,18] the present review describes recent update 
on the antimicrobial properties of bio-inspired NPs. In 
the following sections, the synthesis and application 
of a variety of NPs of the two major noble metals (gold 
and silver) has been presented in a classified manner. In 
addition, the applications of ZnONPs (although not bio-
inspired) have also been discussed as they are becoming 
popular as antimicrobial agents with regard to medical 
applications.

Gold nanoparticles as antimicrobial agents

Gold NPs (AuNPs) have been studied extensively as they 
display several unique features. They can be synthesized by 
relatively simple methods, exhibit good water solubility, and 
display excellent stability. In recent years, green approaches 
for the generation of AuNPs are on the rise and their 
antimicrobial properties have also been evaluated. There are 

a few reports on AuNPs mediated by plant material, fungi, 
and bacteria, as shown in Figure 1. The following section 
summarizes the reports on bio-inspired AuNPs and their 
antimicrobial activities.

A few plant products have been applied for synthesizing 
antimicrobial AuNPs. For example, bioreduction of 
chloroauric acid (HAuCl4) to Auº by the plant extract of 
Mentha piperita (Lamiaceae) has been reported recently.[25] 
Amide groups in the extract were thought to be involved in 
the synthetic process. The NPs were 150 nm and exhibited 
strong antibacterial activity against Escherichia coli. AuNPs 
have also been synthesized by using banana peel (Musa 
paradisiaca) extract (BPE).[26] This simple, non-toxic, 
eco-friendly “green material” reduced HAuCl4 to AuNPs. 
Dynamic light scattering studies revealed the average 
size of the NPs to be 300 nm. Fourier transform infra red 
(FTIR) spectroscopy indicated the involvement of carboxyl, 
amine, and hydroxyl groups in the synthetic process. The 
BPE-mediated NPs displayed efficient antimicrobial activity 
toward Candida albicans, Shigella sp., Citrobacter koseri, E. 
coli, Proteus vulgaris, and Enterobacter aerogenes. However, 
antibacterial activity was not observed with Klebsiella sp. 
and Pseudomonas aeruginosa.

A few microbial systems including fungi, yeasts, and 
bacteria have been used in the synthesis of antimicrobial 
AuNPs. A green method to synthesize nanogold-
bioconjugate (NGBC) has been described.[27] The AuNPs 
(10 nm average diameter) were produced on the surface of 
Rhizopus oryzae by in situ reduction of HAuCl4. The NGBC 
showed high antimicrobial activity against Gram-negative 
and Gram-positive pathogenic bacteria as well as against 
yeasts (Saccharomyces cerevisiae and C. albicans). The NGBC 
has been proposed as a promising candidate for obtaining 
potable water free from pathogens. Extracellular synthesis 
of AuNPs by a yeast (Candida guilliermondii) has also been 
described.[28] The biosynthesized NPs were 50 to 70  nm 
and displayed antimicrobial activity against five pathogenic 
bacterial strains. The highest efficiency was observed 
against Staphylococcus aureus. In another report, the metal-

Figure 1: Summary of bio-inspired gold nanoparticles as 
antimicrobial agents
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reducing bacterium Shwanella oneidensis brought about the 
reduction of tetrachloroaurate  (III) ions to extracellular 
homogenous spherical gold nanocrystallites with an average 
size of 12±5  nm.[29] The particles were possibly fabricated 
by reducing agents present in the cell membrane and were 
capped by a detachable protein/peptide. The antibacterial 
activity of these AuNPs was assessed against E. coli, 
S.  oneidensis, and Bacillus subtilis. However, these AuNPs 
were neither toxic nor inhibitory toward any of the test 
bacteria.

Cefaclor is a well-known second-generation antibiotic 
belonging to the b-lactam class of antibiotics derived 
from the fungus Acremonium (previously Cephalosporium). 
There is a report on a one-pot synthetic method for 
the development of AuNPs (52–22  nm) using this 
antibiotic.[30] The primary amine group of cefaclor acted 
as the reducing as well as the capping agent leaving the 
b-lactam ring available for antibacterial activity. The 
cefaclor-reduced AuNPs displayed potent antimicrobial 
activity against S.  aureus and E. coli as compared with 
cefaclor or AuNPs individually. The minimum inhibitory 
concentration (MIC) values of cefaclor-reduced AuNPs 
were found to be 10  µg/ml and 100  µg/ml for S.  aureus 
and E. coli, respectively. The AuNPs thus obtained were 
also coated onto polyethyleneimine-modified glass 
surfaces to obtain antimicrobial coatings (inhibiting 
growth of E. coli) suitable for biomedical applications. 
The antibacterial activity of these particles was through 
the combined action of cefaclor inhibiting the synthesis 
of the peptidoglycan layer and AuNPs generating “holes” 
in bacterial cell walls.

Silver nanoparticles as antimicrobial agents

An extensive literature survey has shown that AgNPs are 
the most popular inorganic NPs to be used as antimicrobial 
agents. There are a few reviews that summarize the green 
methods for AgNP synthesis.[15-18] This review will focus on 
the recent literature on bio-inspired NPs that have been 
tested for their antimicrobial activities. This literature has 
been classified in subsequent sections as (i) carbohydrate-
mediated, (ii) plant-mediated, (iii) fungal biomass-mediated, 
and (iv) bacteria-mediated synthesis of AgNPs [Figure 2].

Carbohydrate polymer-mediated synthesis of silver 
nanoparticles and their antimicrobial activities
Plant- and animal-derived carbohydrates have been 
employed in the synthesis of AgNPs. Table 1 summarizes 
carbohydrate polymer-mediated synthesis and properties of 
antimicrobial AgNPs.

Plant-inspired synthesis of silver nanoparticles and 
their applications as antimicrobial agents
A variety of plant parts including barks, callus, leaves, 
tubers, and fruit peels have been used for the synthesis 
of AgNPs that display antimicrobial properties. Cinnamon 
zeylanicum bark powder (CBP) and powder extracts (CBPE) 
have been applied for this purpose. CBPE was more 
effective in the reduction of Ag+ to Agº. The antimicrobial 
activity of the AgNPs was tested against E. coli (BL 12). The 
effective concentrations required to induce a 50% effect 
(EC50) were found to be 11  ±  1.72  mg/l and MIC values 
were 50 mg/l.[35]

Figure 2: Summary of bio-inspired silver nanoparticles as antimicrobial agents
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The callus and leaf extracts of the coastal sea marsh plant 
Sesuvium portulacastrum L have also been investigated 
for their ability to synthesize AgNPs.[36] The former was 
more effective in NP synthesis. The size of the NPs was 
between 5 to 20  nm. Proteins, flavones, and terpenoids 
were responsible for stabilizing the AgNPs. Among 
P.  aeruginosa, S.  aureus, Listeria monocytogenes, Micrococcus 
luteus, Klebsiella pneumonia, Alternaria alternata, Penicillium 
italicum, Fusarium equiseti, and C. albicans that were 
tested, highest zone of inhibition (ZOI) of 23  mm was 
formed against S. aureus. On the other hand, M. luteus was 
approximately three-fold less affected (8  mm ZOI). The 
ZOI obtained with Penicillium sp. was 18  mm and with  
C. albicans, it was 12 mm.

The aqueous leaf extract of Acalypha indica, an Indian 
traditional medicinal plant, was also able to rapidly (within 
30 minutes) reduce ionic silver and stabilize AgNPs that 
were 20 to 30 nm in size.[37] These AgNPs showed effective 
antibacterial activity against E. coli and Vibrio cholera. The 
MIC values (lowest concentration at which no visible growth 
of the test pathogens was observed) for both the cultures 
were 10  µg/ml. The leaf extracts of Eucalyptus citriodora 
and Ficus bengalensis have also been successfully employed 
for the “green” synthesis of cotton fibers loaded with 
AgNPs.[38] These extracts that were rich in polysaccharides 
composed of p-menthane-3,8-diol, b-sitosterol, a-d-
glucose, and mesoinositol reduced silver salts and stabilized 
AgNPs (average size of 21  nm). Cotton fibers loaded with 
NPs were also fabricated by the in  situ reduction of silver 
nitrate into AgNPs. The biological synthesis of AgNPs using 
Solanum torvum leaf extracts has been reported recently. [39] 
The reduction of the AgNO3 to AgNPs was completed in 
60 minutes. Carboxylate groups in the biological material 
were important in the reductive process. The average size of 
the NPs was 14 mm. The growth of P. aeruginosa, S. aureus, 
Aspergillus flavus, and Aspergillus niger was inhibited by 
these bio-inspired NPs.

A rapid, convenient, and extracellular method for synthesis 
of AgNPs has been developed with the help of onion 
(Allium cepa) leaf extract.[40] The average size of AgNPs was 
33.6 nm. The effect of AgNPs on the bacterial growth was 
monitored on the basis of optical density measurements. 
As the concentration of AgNPs was increased, there was 
a decrease in bacterial growth of E. coli and Salmonella 

typhimurium. Another simple eco-friendly mechanism for 
the biosynthesis of AgNPs has been reported by using leaf 
extracts of Garcinia mangostana (mangosteen).[41] Silver ions 
when exposed to leaf extract were reduced to AgNPs with an 
average size of 35 nm. Furthermore, these NPs were highly 
effective against a variety of multidrug-resistant human 
pathogens. For E. coli, the ZOI with AgNPs (20 µg/ ml) was 
15 mm and for S. aureus, it was 20 mm. In a recent report, the 
bioreduction of silver nitrate to AgNPs by the plant extract 
of Mentha pipertita has also been described. [25] The amide 
groups were involved in NP synthesis that were 90 nm in 
size. The synthesized AgNPs exhibited strong antibacterial 
activity against E. coli and S. aureus, the test cultures that 
were used.

Synthesis of AgNPs by Curcuma longa tuber powder and 
extract has also been described.[42] The tuber extracts 
were more efficient in AgNP synthesis. In the extract, the 
content of the reducing agents was large and these were 
easily available for the reductive process. C. longa tubers are 
known to be rich in terpenoids such as cineol, borneol, and 
in zingiberene, sabinene, a-phellandrene, sesquiterpines, 
and curcumin. These along with protein components were 
believed to play a role in silver nanoparticle biosynthesis. 
The minimum bactericidal concentration of these 
AgNPs for E. coli BL-21 strain was found to be 50  mg/l. 
Immobilization of AgNPs on cotton cloth showed better 
bactericidal activity when compared with polyvinylidene 
fluoride-immobilized cloth.

The use of fruit peels for the synthesis of AgNPs with 
antimicrobial activity has also been reported. Bio-inspired 
AgNPs were synthesized with the aid of BPE (Musa 
paradisiaca), a non-toxic, eco-friendly biological material.[43] 
Boiled, crushed, acetone precipitated, air-dried peel powder 
brought about a reduction of silver nitrate. Silver nanosized 
crystallites were obtained after short incubation periods. 
FTIR analysis indicated the role of different functional 
groups (carboxyl, amine, and hydroxyl) in the synthetic 
process. These AgNPs displayed antimicrobial activity 
against fungi such as C. albicans and Candida lipolytica. They 
were also antibacterial against E. coli, E. aerogenes, Klebsiella 
sp., and Shigella sp. Other bacteria such as C.  koseri, 
P.  vulgaris, and P. aeruginosa, however, did not display the 
characteristic zones of inhibition, indicating that these 
cultures were not inhibited by the AgNPs.

Table 1: Carbohydrate-mediated synthesis of antimicrobial silver nanoparticles
Carbohydrate and reference Size (nm) Mechanism of synthesis Antimicrobial activity toward

Chitosan[31] 6-8 Hydroxyl, carbonyl groups E. coli, S. aureus, B. subtilis
Gum kondagogu derived from 
Cochlospermum gossypium)[32]

19, 55 Hydroxyl, carboxyl groups associated with 
rhamnose, galactose, uronic acids, and peptides

S. aureus, E. coli, P. aeruginosa

Glycogen[33] 10 Hydroxyl groups C. albicans, E. coli, S. aureus
Sulfated polysaccharide (Marine 
algae Porphyra vietnamensis)[34]

13 Sulfate moiety of polysaccharide, anionic 
polysaccharide as capping agent 

Gram-negative bacteria
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Table 2: Synthesis of antimicrobial silver nanoparticles by fungi
Fungus and reference Size (nm) Mechanism of synthesis Antimicrobial activity toward

Aspergillus niger
(soil isolate)[45]

20 Nitrate reductase, protein S. aureus, E. coli

Aspergillus niger (silver thread disposal site)[46] 3-30 Nitrate reductase S. aureus, E. coli, Bacillus sp.
Aspergillus niger (mangrove sediment)[47] 5-35 70 kDa protein Clinical pathogens
Aspergillus clavatus (Azadirachta indica stem 
endophyte)[48]

10-25 – C. albicans, Pseudomonas fluorescens, E. coli

Aspergillus clavatus[49] 550-650 – S. aureus, Staphylococcus epidermidis
Aspergillus oryzae var. viridis[50] 5-50 Organic content of dead cells S. aureus KCCM 12256
Fusarium acuminatum (Zingiber officinale)[51] 13 Nitrate-dependent reductase S. aureus, Salmonella typhi,  

S. epidermidis, E. coli
Fusarium solani[52] 3-8 – S. aureus, E. coli
Candida guilliermondii[28] 10-20 – S. aureus
Phoma glomerata[53] – S. aureus, E. coli, P. aeruginosa
Amylomyces rouxii[54] 20 – S. aureus, E. coli, Citrobacter, S. dysenteriae,  

P. aeruginosa, B. subtilis, Fusarium oxysporum
Trichoderma viride[55] 5–40 – Gram-positive and -negative bacteria
Alternaria alternata[56] 20-60 – Phoma glomerata, Trichoderma sp., C. albicans
Penicillium (K1 and K10)[57] 10–100 – Bacillus cereus, S. aureus, E. coli, P. aeruginosa

The aqueous extracts of Citrus sinensis (orange) peels for  the 
synthesis of starch-supported AgNPs is also reported.[44] 
The antimicrobial activity of these NPs was tested against 
B. subtilis in the presence and absence of rifampicin. In the 
absence of rifampicin, a larger ZOI (20 mm) was obtained. 
However, in the presence of rifampicin, this was 17 mm. The 
starch associated with the NPs allowed lesser diffusion of 
the NPs, thereby explaining the observed results.

Antimicrobial activities of silver nanoparticles 
synthesized by fungi
Fungi have been used extensively for the synthesis of AgNPs. 
Table 2 summarizes the synthesis of AgNPs by a variety of 
fungi. The most frequent reports are on Aspergillus and 
Fusarium sp.

Bacterial synthesis of silver nanoparticles
A few Gram-negative bacteria have been used to 
synthesize antimicrobial AgNPs. AgNPs were synthesized 
by using Klebsiella pneumoniae and their antimicrobial 
activity against S. aureus and E. coli was evaluated.[58] The 
experimentation showed that the antibacterial activities of 
antibiotics such as penicillin G, amoxicillin, erythromycin, 
clindamycin, and vancomycin were enhanced in the 
presence of AgNPs against both the test cultures. With 
erythromycin, the highest synergistic activity was observed 
against the test S.  aureus culture. In another study, the 
culture supernatant of P. aeruginosa strain BS-161R was 
effective in the simple and cost-effective green synthesis of 
AgNPs. [59] The reduction of silver ions resulted in mono-
dispersed and spherical particles with an average size of 
13  nm. The enzyme nitrate reductase and rhamnolipids 
present in the culture supernatant were thought to be 
responsible for the reduction and capping, respectively. 
The prepared AgNPs exhibited strong antimicrobial activity 

against S. aureus, Micrococcus luteus, C. albicans, and C. krusei 
at 8  µg/ml concentrations, suggesting a broad-spectrum 
nature of their antimicrobial activity. Another recent 
report describes the facile biosynthesis of small, spherical, 
nearly mono-dispersed silver nanocrystallites with average 
size of 4±1.5  nm by using the metal-reducing bacterium, 
Shwanella oneidensis MR-1.[60] Carbonyl, hydroxyl, amide, 
and carboxyl groups were involved in the synthetic process. 
Additionally, the antibacterial properties of these biogenic 
AgNPs were compared with those of chemically synthesized 
NPs (colloidal-Ag) and (oleate-Ag) on E. coli, S. oneidensis, 
and B. subtilis. The different chemical/biological coatings on 
the NPs significantly influenced their toxicity. The authors 
have suggested that such a strategy could in turn provide 
a means for adapting NPs for different applications or for 
altering their fate in biological and environmental systems.

There are a few reports on Gram-positive bacteria producing 
AgNPs. For example, the extracellular components of 
Streptomyces hygroscopicus resulted in the development of 
spherical AgNPs that were 20 to 30 nm.[61] Furthermore, the 
biosynthesized AgNPs significantly inhibited the growth 
of medically important pathogenic Gram-positive bacteria 
(B. subtilis and Enterococcus faecalis), Gram-negative bacteria 
(E. coli and S. typhimurium), and the yeast C. albicans. 
In another study, a strain of B. licheniformis was used to 
synthesize AgNPs.[62] These bio-inspired AgNPs were able 
to disrupt biofilms of two common bacterial pathogens, 
P. aeruginosa and S. epidermidis, a major cause of microbial 
keratitis. Observations in microtiter plate assays disclosed 
the potential of AgNPs in the effective inhibition of biofilm 
formation by these two cultures. The results strongly 
suggested the futuristic applications of AgNP-based 
contact lens care solutions, for biofilm-based human ocular 
problems.
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Other (non-bioinspired) inorganic 
nanoparticles as antimicrobial agents

Oxides of titanium, copper, aluminum, and zinc are some 
of the other inorganic nanoscale materials that have 
antimicrobial activity. An extensive literature survey 
has shown that most of these NPs have not generally 
been synthesized by using biological systems. Although 
the aforementioned variety of metal oxides have been 
investigated for their antimicrobial activities, ZnONPs 
have received particular attention in medical settings.[63] 
Similar to other metal oxides, these ZnONPs have also been 
synthesized chemically. ZnONPs have several advantageous 
features. They display photo-catalytic and -oxidizing 
capacities against biological and chemical species. They 
are stable under harsh conditions and can be fabricated at 
ambient temperature. The most important character is that 
they are generally regarded as safe. Table 3 summarizes the 
use of such chemically synthesized ZnONPs individually 
or in combinations with other agents in being effective as 
antimicrobial agents.

Conclusion

In conclusion, a variety of biological systems have been 
employed for the synthesis of NPs displaying antimicrobial 
properties. An important point that arises from the literature 
survey involved is that bio-inspired NPs of noble metals 
(silver, in particular) are very popular as antimicrobial agents. 
Most of the studies have involved the testing of antimicrobial 
properties against potential pathogens. However, these may 
also possess antimicrobial properties toward the normal 
flora. In the future, a possible line of investigation would be 
the development of nanomachines specifically destroying 
pathogenic microorganisms. However, it must be noted 
that there are a few constraints on the use of these NPs 

as antimicrobial agents. First, a dramatic increase in the 
prices of these noble metals worldwide would restrict their 
widespread use. Second, microorganisms are capable of 
developing resistance to metals through natural selection or 
horizontal gene transfer. Third, not all type of gold and AgNPs 
are antimicrobial in nature. There is thus a need to determine 
additional factors involved in the biosynthetic processes 
that make such nanoparticle preparations antimicrobial or 
non-antimicrobial. Another aspect is related to the use of 
crude extracts in the synthetic procedures. Components 
of these extracts should be tested for their detrimental 
effects on human health. It may thus be necessary to isolate 
and purify the components in the extract that mediate the 
synthetic process. It is also evident that apart from gold and 
AgNPs, oxides of other metals are less expensive, lucrative 
alternatives. There is scope for studies on the synthesis of such 
metal oxide NPs through biological routes and examination 
of their potential as antimicrobial agents.
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